自動ご注文フォームで24時間いつでもご発注いただけます。
※祝日・年末年始等の長期休暇も通常営業
The 21st century is currently witnessing the establishment of data-driven science as a complementary approach to the traditional hypothesis-driven method. This (r)evolution accompanying the paradigm shift from reductionism to complex systems sciences has already largely transformed the natural sciences and is about to bring the same changes to the techno-socio-economic sciences, viewed broadly.EPJ Data Science offers a publication platform to address this evolution by bringing together all academic disciplines concerned with the same challenges:how to extract meaningful data from systems with ever increasing complexityhow to analyse them in a way that allows new insightshow to generate data that is needed but not yet availablehow to find new empirical laws, or more fundamental theories, concerning how any natural or artificial (complex) systems workThis is accomplished through experiments and simulations, by data mining or by enriching data in a novel way. The focus of this journal is on conceptually new scientific methods for analyzing and synthesizing massive data sets, and on fresh ideas to link these insights to theory building and corresponding computer simulations. As such, articles mainly applying classical statistics tools to data sets or with a focus on programming and related software issues are outside the scope of this journal.EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks†of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice. Less
Indexed in the following public directories
ヶ月 | 論文発表 |
---|---|
0-3 | 1% |
4-6 | 38% |
7-9 | 30% |
>9 | 31% |
EPJ Data Science の創刊は 2012 年です。
EPJ Data Science の発行頻度は Continuous publicationです。
EPJ Data Science の出版社はSPRINGERです。
EPJ Data Scienceの出版方針と研究範囲は本ページ上部で確認できます。
EPJ Data Science の主な指標はEditage内の本ページ上部で確認できます。
EPJ Data ScienceのeISSN番号は2193-1127、pISSN番号は 2193-1127です。
このジャーナルはNetwork embedding, Game server, Financial networks, Social dynamics, Natural experiment, Big data, Social media, Network layer, Pandemic, Face-to-face, Threat perception, Collective action, Unemployment, Official statistics, Ground truth, Model selection, Time series, Blockchain, High frequency, Data visualizationを含むトピックに対応しています。
適切なジャーナルを選ぶことで、あなたの研究内容がもっと関連性が高い読者層に届き、研究のインパクトやその分野への貢献度を最大化させることができるからです。
はい、著名なジャーナルから出版することは、あなたの経歴にもプラスに働くため、その後の助成金やキャリアプランにも影響があります。
ハイインパクトジャーナルから出版することはより多くの人の目に研究が触れることになりますが、同時に高い競争率の中から出版に漕ぎつける必要があります。そのため、インパクトファクターと出版にかかる工数のバランスを考慮するべきです。