質問: 回帰分析と相関分析は、どのように使い分けたらよいですか?

質問の内容 -
検証したい仮説が複数あるのですが、どの分析手法が適しているのか分かりません。結果の解釈や報告の仕方などを含む、各分析手法の使い方が分かるリソースを探しています。私のようなキャリアの浅い研究者にお勧めのリソースがあれば教えてください。
4 この質問に答える
回答:

相関分析を使うか回帰分析を使うかは、研究のデータセットや目的によって異なります。相関分析は、2つの変数の関係を定量的に表すために使用します。相関分析では、片方の変数が変化したときに他方がどの程度変化するかを示す相関係数を算出し、2変数間の線形関係を評価します。


回帰分析は相関分析の関連手法で、結果変数と危険因子または交絡変数との関係を評価するものです。結果変数は反応変数または従属変数とも呼ばれ、危険因子と交絡変数は予測変数または独立変数とも呼ばれます。回帰分析は、既知の変数(x)の単位変化における推定変数(y)への影響を特定する必要がある場合に役立ちます。


統計分析でさらなるサポートが必要な場合は、Editage’s Statistical Review Serviceをはじめとする専門の出版支援サービスの力を借りるのもよいでしょう。


関連記事:

研究デザインにおける検定力の重要性

How do I reply to a reviewer's comment about my logistic regression analysis?

回答:

Regression analysis is a statistical method used to predict the value of one variable based on the value of another variable. In regression analysis, one variable is considered the independent variable, while the other is the dependent variable. The goal of regression analysis is to find the best-fit line that describes the relationship between the independent variable and the dependent variable. This line can then be used to make predictions about the value of the dependent variable based on the value of the independent variable. Regression analysis also provides information about the strength and direction of the relationship between the two variables.

On the other hand, correlation analysis is a statistical method used to measure the degree of association between two variables. In correlation analysis, both variables are treated as being equal in importance, and the goal is to measure the strength and direction of their relationship. Correlation analysis provides a correlation coefficient that ranges from -1 to 1, where a value of -1 indicates a perfect negative correlation, a value of 0 indicates no correlation, and a value of 1 indicates a perfect positive correlation. Read more <a href='https://www.sevenmentor.com/ethical_hacking_training_institute_training_classes_in_pune_best_course_in_india.php'>Ethical Hacking Course in Pune</a>

 

In summary, regression analysis is used to predict the value of one variable based on the value of another variable, while correlation analysis is used to measure the strength and direction of the relationship between two variables.

回答:

https://www.sevenmentor.com/ethical_hacking_training_institute_training_classes_in_pune_best_course_in_india.php

 

回答:

Whether to use correlation analysis or regression analysis depends on the dataset and objectives of the study pay someone to do my online classes is used to quantitatively describe the relationship between two variables . Correlation analysis evaluates the linear relationship between two variables by calculating the correlation coefficient, which indicates how much the other variable changes when one variable changes .


Educational Technologies Comparison  is a related technique of correlation analysis that evaluates the relationship between outcome variables and risk factors or confounding variables. Outcome variables are also called response or dependent variables, and risk factors and confounding variables are also called predictor or independent variables. Regression analysis is useful when you need to identify the effect of unit changes in a known variable (x)(y)


If you need additional help with your statistical analysis, you may want to seek help from a professional publication support service such as Editage's Statistical Review Service .


このコンテンツは「研究の実施」ステージに属しています。

研究を行うにあたっての基本を学びましょう。エキスパートによる無料の個別コーチングを受けましょう。